bihar board class 10th maths | Triangles

Bihar Board Solutions for Class 10 Maths Chapter 6 Triangles

प्रश्नावली 6.1 (NCERT Page 135)

प्र. 1. कोष्ठकों में दिए शब्दों में से सही शब्दों का प्रयोग करते हुए, रिक्त स्थानों को भरिए :
(i) सभी वृत्त …….. होते है| (सर्वांगसम, समरूप)
(ii) सभी वर्ग…… होते हैं| (समरूप, सर्वांगसम)
(iii) सभी …….. त्रिभुज समरूप होते है | (समद्विबाहु, समबाहु)
(iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि
(i) उनके संगत कोण ……..हो तथा
(ii) उनकी संगत ……भुजाएँ हों| (बराबर, समानुपाती|
हलः
(i) सभी वृत्त समरूप होते हैं।
(ii) सभी वर्ग समरूप होते हैं।
(iii) सभी समबाहु त्रिभुज समरूप होते हैं।
(iv) भुजाओं की समान संख्या वाले दो बहुभुजे समरूप होते हैं, यदि
(i) उनके संगत कोण बराबर हों तथा
(ii) उनकी संगत समानुपाती भुजाएँ हों।

प्र. 2. निम्नलिखित युग्मों के दो भिन्न-भिन्न उदाहरण दीजिएः
(i) समरूप आकृतियाँ
(ii) ऐसी आकृतियाँ जो समरूप नहीं हैं।
हलः
(i) (a) दो वृत्त परस्पर समरूप होते हैं।
(b) दो वर्ग परस्पर समरूप होते हैं।
(ii) (a) एक वृत्त और एक त्रिभुज समरूप नहीं होते हैं।
(b) एक समद्विबाहु त्रिभुज और एक विषमबाहु। त्रिभुज समरूप आकृतियाँ नहीं होती हैं।

प्र. 3. बताइए कि निम्न चतुर्भुज समरूप हैं या नहीं:



हल
चतुर्भुज PQRS तथा ABCD में,
PQ = QR = RS = SP = 1.5 cm
तथा AB = BC = CD = DA = 3.0 cm
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1 Q3.1
अत: दो चतुर्भुजों की भुजाएँ समानुपात में हैं।
परन्तु देखने से ही प्रतीत होता है कि संगत कोण बराबर नहीं हैं।
अत: चतुर्भुज PQRS तथा चतुर्भुज ABCD समरूप नहीं हैं।

प्रश्नावली 6.2 (NCERT Page 142)

प्र. 1. आकृति में, DE || BC है। चित्र (i) में EC और चित्र (ii) में AD ज्ञात कीजिए-



हल


प्र. 2. किसी ∆PQR की भुजाओं PQ और PR पर क्रमशः बिन्दु E और F स्थित हैं। निम्नलिखित में से प्रत्येक स्थिति के लिए, बताइए कि क्या EF || QR है-
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm और FR = 2.4 cm
(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm और RF = 9 cm
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm और PF = 0.36 cm
हल

∆PQR में भुजा PQपर एक बिन्दु E तथा भुजा PR पर एक बिन्दु F स्थित है।
बिन्दुओं E व F को मिलाकर रेखाखण्ड EF खींचा गया है।
(i) दिया है, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm और FR = 2.4 cm


प्र. 3. आकृति में, यदि LM || CB और LN || CD हो तो सिद्ध कीजिए कि AMAB=ANAD है।



हल

दिया है : रेखाखण्ड LM || CB और LN || CD है।
सिद्ध करना है : AMAB=ANAD
उपपत्ति : ∆ABC में भुजा AB पर एक बिन्दु M तथा भुजा AC पर एक बिन्दु L है जिससे रेखाखण्ड LM || CB


प्र. 4. आकृति में, DE || AC और DF || AE है। सिद्ध कीजिए कि BFFE=BEEC है।


हल

दिया है : ∆ABC में भुजा AB पर एक बिन्दु D है और भुजा BC पर दो बिन्दु E व F हैं।
रेखाखण्ड DF, DE व AE खींचे गए हैं। DE || AC है और DF || AE है।


प्र. 5. आकृति में, DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।


हल

दिया है : दी गई आकृति में DE || OQ तथा DF || OR है।
सिद्ध करना है : EF || QR
उपपत्ति : ∆POQ में, DE || OQ
PEEQ=PDDO ……..(1)
और ∆POR में, DF || OR
PFFR=PDDO ………(2)
तब, समीकरण (1) व समीकरण (2) से,
PEEQ=PFFR
अब ∆PQR में, PEEQ=PFFR
तब, थेल्स प्रमेय के विलोम से, EF || QR
इति सिद्धम्

प्र. 6. आकृति में क्रमशः OP, OQ और OR पर स्थित बिन्दु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।


हल

दिया है : दिए गए चित्र में रेखाखण्डों OP, OQ और OR पर क्रमशः बिन्दु A, B और C इस प्रकार स्थित हैं कि AB || PQ और AC || PR है।
सिद्ध करना है : BC || QR
उपपत्ति : ∆POQ में, AB || PQ (दिया है)
OAAP=OBBQ ………(1)
इसी प्रकार ∆POR में, AC || PR (दिया है)
OAAP=OCCR ….(2)
तब, समीकरण (1) व समीकरण (2) से,
OBBQ=OCCR
अब ∆OQR में, OBBQ=OCCR
थेल्स प्रमेय के विलोम से, BC || QR
इति सिद्धम

प्र. 7. आधारभूत आनुपातिक प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिन्दु से होकर दूसरी भुजा के सामान्तर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।


हल

दिया है : ∆ABC की एक भुजा AB का मध्य-बिन्दु D है।
D से DE || BC रेखा खींची गई है जो रेखा AC को बिन्दु E पर काटती है।
सिद्ध करना है : E, AC का मध्य-बिन्दु है।
उपपत्ति : D, AB का मध्य-बिन्दु है।
AD : DB = 1 : 1 और DE || BC.
तब, थेल्स प्रमेय के अनुसार,
ADDB=AEEC
⇒ 11=AEEC
⇒ AE = EC
अत: E, AC का मध्य-बिन्दु है अथवा DE, AC को समद्विभाजित करती है।
इति सिद्धम्

प्र. 8. आधारभूत आनुपातिक प्रमेय के विलोम का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिन्दुओं को मिलाने वाली रेखा तीसरी भुजा के समान्तर होती है।


हल

दिया है : ∆ABC में AB तथा AC के मध्य-बिन्दु क्रमश: D और E हैं।
सिद्ध करना है : DE || BC
उपपत्ति : D, AB का मध्य-बिन्दु है।
AD : BD = 1 : 1
तथा E, AC का मध्य-बिन्दु है।
AE : EC = 1 : 1
ADDB=AEEC
थेल्स प्रमेय के विलोम से ∆ABC में,
ADDB=AEEC
DE || BC
इति सिद्धम्

प्र. 9. ABCD एक समलम्ब है जिसमें AB || DC है। इसके विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं। दर्शाइए कि AOBO=CODO है।



हल
दिया है : ABCD एक समलम्ब है, जिसमें AC तथा BD दो विकर्ण हैं जो परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है: AOBO=CODO
रचना : O से OE || CD खींचिए।
उपपत्ति : ∆ADC में, OE || DC
AEED=AOCO ………(1)
समलम्ब ABCD में,
AB || CD और रचना से OE || CD ⇒ OE || AB
अब, ∆ADB में, OE ||
EDAE=DOBO
⇒ AEED=BODO …….(2)
समीकरण (1) व समीकरण (2) से,
AOCO=BODO
⇒ AO × DO = BO × CO
⇒ AOBO=CODO
इति सिद्धम्

प्र. 10. एक चतुर्भुज ABCD के विकर्ण परस्पर बिन्दु पर इस प्रकार प्रतिच्छेद करते हैं कि AOBO=CODO है। दर्शाइए कि ABCD एक समलम्ब है।


हल
दिया है : ABCD एक चतुर्भुज है जिसके विकर्ण AC तथा BD बिन्दु O पर एक-दूसरे को इस प्रकार विभक्त करते हैं कि
AOBO=CODO
सिद्ध करना है : ABCD एक समलम्ब है।
रचना : O से OE || DC खींचिए।
उपपत्ति : ΔBDC में, OE || DC
BODO=BEEC …….(1)
परन्तु दिया गया है कि
AOBO=CODO
⇒ AOCO=BODO ………(2)
समीकरण (1) व समीकरण (2) से,
AOCO=BEEC
⇒ COAO=ECBE
OE || AB (थेल्स प्रमेय के विलोम से)
AB || CD (∵ OE || CD रचना से)
अत: ABCD एक समलम्ब है।
इति सिद्धम्

प्रश्नावली 6.3 (NCERT Page 153)

प्र. 1. बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

हल
(i) आकृति में दिए गए दोनों त्रिभुजों में,
∠A = 60°, ∠B = 80°, ∠C = 40° तथा ∠P = 60°, ∠Q = 80°, ∠R = 40°
∠A = ∠P, ∠B = ∠Q, ∠C = ∠R
अतः दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆ABC ~ ∆PQR

(ii) आकृति में दिए गए दोनों त्रिभुजों में,
AB = 2, BC = 2.5, CA = 3.0
तथा PQ = 6, QR = 4, RP = 5



अत: दो त्रिभुजों की समरूपता की कसौटी SSS से,
∆ABC ~ ∆QRP

(iii) निम्न आकृति में दिए गए दोनों त्रिभुजों में,
LM = 2.7, MP = 2, PL = 3
तथा DE = 4, EF = 5, FD = 6



या दोनों त्रिभुजों की भुजाएँ समानुपात में नहीं हैं।
अतः दोनों त्रिभुज समरूप नहीं हैं।

(iv) दिए गए दोनों त्रिभुजों में,
∠M = 70°, NM = 2.5, ML = 5 तथा ∠Q = 70°, PQ = 6, QR = 10


अतः दोनों त्रिभुज समरूप नहीं हैं।

(v) दिए गए दोनों त्रिभुजों में,
∠A = 80°, AB = 2.5, AC = अनिश्चित तथा ∠F = 80°, FD = 5, FE = 6
स्पष्ट है कि ∠A व ∠F को अन्तर्विष्ट करने वाली भुजाएँ AB और FD तथा AC और FE आनुपातिक नहीं हैं।
अतः दोनों त्रिभुज समरूप नहीं हैं।

(vi) ∆DEF में, ∠D = 70°, ∠E = 80°
∴ ∠F = 180° – (70° + 80°) = 30°
और ∆PQR में ∠Q = 80°, ∠R = 30°
∴ ∠P = 180° – (80° + 30°) = 70°
तब, ∆DEF और ∆PQR की तुलना करने पर,
∠D = ∠P, ∠E = ∠Q, ∠F = ∠R,
अत: दो त्रिभुजों की समरूपता की उप-कसौटी AA से,
∆DEF ~ ∆PQR

प्र. 2. आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° है। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।


हल

दी गई आकृति में, DB एक ऋजु रेखा है और उससे OC, बिन्दु O पर मिलती है जिससे ∠DOC और ∠BOC एक रैखिक युग्म के कोण हैं।
∠DOC + ∠BOC = 180°
∠DOC + 125° = 180° (∵ ∠BOC = 125°)
∠DOC = 180° – 125° = 55°
तब, ∆DOC में,
∠CDO + ∠DOC + ∠DCO = 180°
70° + 55° + ∠DCO = 180° (∵ ∠CDO = 70°)
∠DCO = 180° – (70° + 55°)
∠DCO = 55°
∵ ∆ODC ~ ∆OBA
∴ ∠DCO = ∠OAB
∠OAB = 55° (∵ ∠DCO = 55°)
अत: ∠DOC = 55°, ∠DCO = 55°, ∠OAB = 55°

प्र. 3. समलम्ब ABCD जिसमें AB || DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दो त्रिभुजों की समरूपता कसौटी का प्रयोग करते हुए, दर्शाइए कि OAOC=OBOD है।


हल

दिया है : ABCD एक समलम्ब है जिसमें AB || CD तथा उसके विकर्ण AC और BD बिन्दु O पर काटते हैं।
सिद्ध करना है : OAOC=OBOD
उपपत्ति : AB || CD और AC तिर्यक रेखा है।
∠OAB = ∠OCD (एकान्तर कोण युग्म)
और ∠AOB = ∠COD (शीर्षाभिमुख कोण)
अब, ∆AOB और ∆OCD में,
∠AOB = ∠COD
तथा ∠OAB = ∠OCD (ऊपर सिद्ध किया)
∴ त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆AOB ~ ∆OCD
OAOC=OBOD (भुजाओं की आनुपातिकता से)
इति सिद्धम्

प्र. 4. दी गई आकृति में, QRQS=QTPR तथा ∠1 = ∠2 है। दर्शाइए कि ∆PQS ~ ∆TQR है।


हल

दिया है : दी गई आकृति में,
QRQS=QTPR तथा ∠1 = ∠2 है।
सिद्ध करना है : ∆PQS ~ ∆TQR
उपपत्ति : ∆PQR में,
∠1 = ∠2
∠PQR = ∠PRQ
भुजा QP = भुजा PR …….(1)
अब, QRQS=QTPR (दिया है)
QRQS=QTQP [समीकरण (1) से]
तब, ∆PQS और ∆TQR में,
∠Q उभयनिष्ठ है और इस कोण को अंतर्विष्ट करने वाली भुजाएँ (QP व QT) तथा (QS व QR) आनुपातिक हैं।
अत: दो त्रिभुजों की समरूपता की कसौटी SAS से,
∆PQS ~ ∆TQR
इति सिद्धम्

प्र. 5. ∆PQR की भुजाओं PR और QR पर क्रमशः बिन्दु S और T इस प्रकार स्थित हैं कि ∠P = ∠RTS है। दर्शाइए कि ∆RPQ ~ ∆RTS है।


हल

दिया है : दी गई आकृति में, ∠P = ∠RTS
सिद्ध करना है : ∆RPQ ~ ∆RTS
उपपत्ति : ∆RPQ तथा ∆RTS में,
∠P = ∠RTS (दिया है)
तथा ∠R = ∠SRT
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆RPQ ~ ∆RTS
इति सिद्धम्।

प्र. 6. दी गई आकृति में, यदि ∆ABE ≅ ∆ACD है तो दर्शाइए कि ∆ADE ~ ∆ABC है।




हल

दिया है : दी गई आकृति में, ∆ABE और ∆ACD सर्वांगसम हैं।
सिद्ध करना है : ∆ADE ~ ∆ABC
उपपत्ति : ∆ABE ≅ ∆ACD (दिया है)
भुजा AB = भुजा AC
और भुजा AE = भुजा AD
अब, ∆ADE और ∆ABC की तुलना करने पर,
AB = AC और AE = AD
ADAB=AEAC अर्थात् ∆ADE और ∆ABC की भुजाएँ (AD व AB) तथा (AE व AC) आनुपातिक हैं और ये दोनों ही भुजा-युग्म प्रत्येक त्रिभुज के लिए ∠A को अन्तर्विष्ट करते हैं।
दो त्रिभुजों की समरूपता के गुणधर्म (कसौटी) SAS से,
∆ADE ~ ∆ABC
इति सिद्धम्

प्र. 7. दी गई आकृति में, ∆ABC के शीर्ष लम्ब AD और CE परस्पर बिन्दु P पर प्रतिच्छेद करते हैं। दर्शाइए कि-
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC


हल

दिया है : ∆ABC में AD और CE शीर्षलम्ब हैं जो एक-दूसरे को बिन्दु P पर काटते हैं।
सिद्ध करना है :
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC
उपपत्ति : ∆ABC में AD और CE शीर्षलम्ब हैं।
AD ⊥ BC तथा CE ⊥ AB
(i) ∆AEP और ∆CDP में,
∠AEP = ∠CDP (प्रत्येक 90° है)
∠APE = ∠CPD (शीर्षाभिमुख कोण)
अत: त्रिभुज की समरूपता के उप-गुणधर्म AA से,
∆AEP ~ ∆CDP
इति सिद्धम्

(ii) ∆ABD और ∆CBE में,
∠ADB = ∠CEB (प्रत्येक 90° है)
∠ABD = ∠CBE (दोनों त्रिभुजों में उभयनिष्ठ है)
अत: त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABD ~ ∆CBE
इति सिद्धम्

(iii) ∆AEP और ∆ADB में,
∠AEP = ∠ADB (प्रत्येक 90° है)
∠PAE = ∠DAB (दोनों त्रिभुजों में उभयनिष्ठ हैं)
अतः त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆AEP ~ ∆ADB
इति सिद्धम्

(iv) ∆PDC और ∆BEC में,
∠PDC = ∠BEC (प्रत्येक 90° है)
∠DCP = ∠BCE (दोनों त्रिभुजों में उभयनिष्ठ है)
अत: त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆PDC ~ ∆BEC
इति सिद्धम्

प्र. 8. समान्तर चतुर्भुज ABCD की बढ़ाई गई भुजा AD पर स्थित E एक बिन्दु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है। दर्शाइए कि ∆ABE ~ ∆CFB हैं।


हल

दिया है : ABCD एक समान्तर चतुर्भुज है जिसकी भुजा AD को किसी बिन्दु E तक बढ़ाया गया है। रेखाखण्ड BE, भुजा CD को बिन्दु F पर प्रतिच्छेदित करता है।
सिद्ध करना है : ∆ABE ~ ∆CFB
उपपत्ति : ABCD एक समान्तर चतुर्भुज है।
BC || AD ⇒ BC || AE
BC || AE और BE तिर्यक रेखा है।
∠EBC = ∠AEB ⇒ ∠AEB = ∠FBC
अब, ∆ABE और ∆CFB में,
∠A = ∠C (समान्तर चतुर्भुज ABCD के सम्मुख कोण हैं)
∠AEB = ∠FBC (ऊपर सिद्ध किया है)
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABE ~ ∆CFB
इति सिद्धम्

प्र. 9. दी गई आकृति में, ABC और AMPदो समकोण त्रिभुज हैं, जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि-
(i) ∆ABC ~ ∆AMP
(ii) CAPA=BCMP




हल

दिया है : ∆ABC और ∆AMP दो समकोण त्रिभुज हैं, जिनमें ∠B तथा ∠M समकोण हैं।
सिद्ध करना है :
(i) ∆ABC ~ ∆AMP
(ii) CAPA=BCMP
उपपत्ति :
(i) समकोण ∆ABC तथा समकोण ∆AMP की तुलना करने पर,
∠B = ∠M (∵ प्रत्येक समकोण है)
∠A = ∠A (उभयनिष्ठ है)
तब, दो त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABC ~ ∆AMP
इति सिद्धम्

(ii) ∆ABC और ∆AMP समरूप हैं।
दोनों त्रिभुजों की संगत भुजाएँ आनुपातिक होंगी।
ABAM=BCMP=CAPACAPA=BCMP
इति सिद्धम्

प्र. 10. CD और GH क्रमशः ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि बिन्दु D औरत क्रमशः ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित हैं। यदि ∆ABC ~ ∆FEG हो तो दर्शाइए कि-
(i) CDGH=ACFG
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF


हल
दिया है : ∆ABC और ∆EGF में CD, ∠ACB का समद्विभाजक है और GH, ∠EGF का समद्विभाजक है तथा ∆BC ~ ∆FEG
सिद्ध करना है :
(i) CDGH=ACFG
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF
उपपत्ति:
∆ABC में CD, ∠ACB का समद्विभाजक है।
∠ACD = ∠DCB = 12 ∠ACB
इसी प्रकार, ∆EGF में GH, ∠FGE का समद्विभाजक है।
∠FGH = ∠HGE = 12 ∠FGE
∠ACD = ∠FGH तथा ∠DCB = ∠HGE
(∵ ∆ABC ~ ∆FEG जिससे ∠ACB = ∠FGE)
अब, ∆DCA तथा ∆HGF में,
∠ACD = ∠FGH (ऊपर सिद्ध किया है)
और ∠A = ∠F (∵ ∆ABC ~ ∆FEG)
अतः समरूपता के उप-गुणधर्म AA से,
∆DCA ~ ∆HGF
इति सिद्धम् (iii)
तब, ∆DCA और ∆HGF में,
CDGH=ACFG
इति सिद्धम् (i)
अब, ∆DCB और ∆HGE में,
∠DCB = ∠HGE (ऊपर सिद्ध किया है।)
∠B = ∠E (∆ABC ~ ∆FEG)
समरूपता के उप-गुणधर्म AA से,
∆DCB ~ ∆HGE
इति सिद्धम् (ii)

प्र. 11. दी गई आकृति में, AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढ़ाई गई भुजा CB पर स्थित E एक बिन्दु है। यदि AD ⊥ BC और EF ⊥ AC है तो सिद्ध कीजिए कि ∆ABD ~ ∆ECF है।


हल

दिया है : एक समद्विबाहु ∆ABC है जिसमें AB = AC है।
भुजा CB को किसी बिन्दु E तक इस प्रकार बढ़ाया गया है कि EF ⊥ AC और AD ⊥ BC
सिद्ध करना है : ∆ABD ~ ∆ECF
उपपत्ति : ∆ABC में, AB = AC
∠ABD = ∠ACD …..(1)
AD ⊥ BC
∠ADB = ∠ADC = 90° ……(2)
EF ⊥ AC
∠EFC = 90° ……(3)
अब, ∆ABD तथा ∆ECF में,
∠ADB = ∠EFC [समीकरण (2) व (3) से]
∠ABD = ∠ACD [समीकरण (1) से]
परन्तु ∠ACD = ∠ECF (दोनों त्रिभुजों में उभयनिष्ठ है)
∠ABD = ∠ECF
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABD ~ ∆ECF
इति सिद्धम्

प्र. 12. एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती हैं। दर्शाइए कि ∆ABC ~ ∆PQR है।


हल

दिया है : ∆ABC तथा ∆PQR दो त्रिभुज हैं जिनमें
ABPQ=BCQR=ADPM
जबकि AD तथा PM माध्यिकाएँ हैं अर्थात BD = 12 BC तथा QM = 12 QR
सिद्ध करना है : ∆ABC और ∆PQR समरूप हैं।


तब, त्रिभुजों की समरूपता की कसौटी SAS से,
अत: ∆ABC और ∆PQR समरूप हैं।
इति सिद्धम्

प्र. 13. किसी त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA2 = CB . CD

हल
दिया है : ∆ABC में BC पर एक बिन्दु D इस प्रकार है कि ∠ADC = ∠BAC
सिद्ध करना है : CA2 = CB . CD
उपपत्ति : ∆CDA और ∆CAB में,
∠ADC = ∠BAC (दिया है)
∠ACD = ∠ACB
∠CAD = ∠ABC (उभयनिष्ठ कोण हैं)
∆CDA ~ ∆CAB (स्वतः समान हैं)
अतः CACD=CBCA
⇒ CA2 = CB . CD
इति सिद्धम्

प्र. 14. एक त्रिभुज ABC की भुजा AB और AC तथा माध्यिका AD, एक अन्य त्रिभुज PQR की भुजाओं PQ और PR तथा माध्यिका PM के समानुपाती हैं। दर्शाइए कि ∆ABC ~ ∆PQR है।
हल

दिया है : ∆ABC और ∆PQR में BC की माध्यिका AD तथा QR की माध्यिका PM है जिससे
ABPQ=ACPR=ADPM





∆ABC और ∆PQR की संगत भुजाएँ आनुपातिक हैं।
अत: ∆ABC ~ ∆PQR
इति सिद्धम्


प्र. 15. लम्बाई 6 m वाले एक ऊर्ध्वाधर स्तम्भ की भूमि पर छाया की लम्बाई 4 m है, जबकि उसी समय एक मीनार की छाया की लम्बाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।


हल

दिया है : 6 मीटर लम्बे स्तम्भ CD की छाया DE = 4 m प्राप्त होती है। उसी समय एक मीनार AB = h m की छाया BE = 28 m प्राप्त होती है।
ज्ञात करना है : मीनार की ऊँचाई h का मान।
गणना : समरूप ∆CDE और ∆ABE में,
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q15.1
अतः मीनार की ऊँचाई = 42 m

प्र. 16. AD और PM त्रिभुजों ABC और PQR की क्रमशः माध्यिकाएँ हैं, जबकि ∆ABC ~ ∆PQR है। सिद्ध कीजिए कि ABPQ=ADPM है।


हल

दिया है : ∆ABC और ∆PQR दो समरूप त्रिभुज हैं। AD, त्रिभुज ABC की और PM, त्रिभुज PQR की माध्यिकाएँ हैं।
सिद्ध करना है : 


∠B और ∠Q को अन्तर्विष्ट करने वाली ∆ABD और ∆PQM की संगत भुजाएँ आनुपातिक हैं।
अत: दो त्रिभुजों की समरूपता की कसौटी SAS से,
∆ABD ~ ∆PQM
तब, समरूप त्रिभुजों की संगत भुजाओं के आनुपातिकता के गुणधर्म से,
इति सिद्धम्


प्रश्नावली 6.4 (NCERT Page 158)

प्र. 1. मान लीजिए ΔABC ~ ΔDEF है और इनके क्षेत्रफल क्रमशः 64 cm2 और 121 cm2 हैं। यदि EF = 15.4 cm2 हो तो BC ज्ञात कीजिए।
हल

त्रिभुजों के क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात


⇒ 11BC = 8 × 15.4
⇒ BC = 8×15.411 = 11.2
अत: BC = 11.2 cm

प्र. 2. एक समलम्ब ABCD जिसमें AB || CD है, के विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं। यदि AB = 2CD हो तो त्रिभुजों AOB और COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए।


हल

AB || CD और AC तिर्यक रेखा है।
∠CAB = ∠ACD या ∠OAB = ∠OCD
AB || CD और DB तिर्यक रेखा है।
∠DBA = ∠BDC या ∠OBA = ∠ODC
अब, ∆AOB तथा ∆COD में,
∠OAB = ∠OCD (एकान्तर कोण)
∠OBA = ∠ODC (एकान्तर कोण)
तथा ∠AOB = ∠COD (शीर्षाभिमुख कोण)
∆OAB ~ ∆OCD
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q2.1

प्रश्न 3.
दी गई आकृति में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O पर प्रतिच्छेद करे, तो दर्शाइए कि ar(ABC)ar(DBC)=AODO है।


हल

दिया है : ∆ABC तथा ∆DBC एक ही आधार BC पर स्थित दो त्रिभुज हैं। AD, BC को बिन्दु O पर प्रतिच्छेद करता है।
सिद्ध करना है : ar(ABC)ar(DBC)=AODO




रचना : शीर्ष A से BC पर AE तथा शीर्ष D से BC पर DF लम्ब खींचा।
उपपत्ति : शीर्षों A तथा D से BC पर AE तथा DF लम्ब खींचे गए हैं।
अत: ∆AEO तथा ∆DFO समकोणीय हैं।
समकोण ∆AEO तथा ∆DFO में,
∠AEO = ∠DFO (प्रत्येक 90°)
∠AOE = ∠DOF (शीर्षाभिमुख कोण हैं)
∆AEO ~ ∆DFO (उप-गुणधर्म AA से)
AEDF=AODO ……(1)
अब, ∆ABC का क्षेत्रफल = 12 × BC × AE
और ∆DBC का क्षेत्रफल = 12 × BC × DF

प्र. 4. यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे सर्वांगसम होते हैं।
हल

दिया है: ∆ABC तथा ∆DEF समरूप हैं और ∆ABC का क्षेत्रफल = ∆DEF का क्षेत्रफल
सिद्ध करना है: ∆ABC = ∆DEF


उपपत्ति: चूँकि समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।


अब, ∆ABC और ∆DEF में,
∠ABC = ∠DEF (∵ ∆ABC ~ ∆DEF)
∠ACB = ∠DFE (∵ ∆ABC ~ ∆DEF)
अतः BC = EF (ऊपर सिद्ध किया है)
∆ABC = ∆DEF
इति सिद्धम्

प्र. 5. एक ∆ABC की भुजाओं AB, BC और CA के मध्य-बिन्दु क्रमश: D, E और F हैं। ∆DEF और ∆ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए।


हल

दिया है : ABC की भुजाओं BC, CA, AB के मध्य-बिन्दु क्रमशः D, E, F हैं जिनको मिलाने से ∆DEF बना है।
ज्ञात करना है : ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल
गणना : D, E, F क्रमश: BC, CA, AB के मध्य-बिन्दु हैं।


अत: ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल = 1 : 4

प्र. 6. सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है।
हल

दिया है : दो समरूप ∆ABC और ∆DEF हैं, जिनमें AP तथा DQ संगत माध्यिकाएँ हैं।


प्र. 7. सिद्ध कीजिए कि एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का
आधा होता है।


हल

दिया है : चतुर्भुज ABCD एक वर्ग है जिसकी एक भुजा AB तथा विकर्ण AC है।
AB तथा AC पर समबाहु ∆ABE तथा ∆ACF बनाए गए हैं।
सिद्ध करना है : ∆ABE का क्षेत्रफल = 12 ∆ACF का क्षेत्रफल
उपपत्ति : वर्ग ABCD की भुजा = AB
वर्ग ABCD का विकर्ण AC = AB√2



अत: ∆ABE का क्षेत्रफल = 12 ∆ACF का क्षेत्रफल
इति सिद्धम्

प्रश्नावली 6.5 (NCERT Page 164)

प्र. 1. कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लम्बाई भी खिए।
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm
हल

समकोण त्रिभुजों में सबसे लम्बी भुजा कर्ण का वर्ग शेष दोनों भुजाओं के वर्गों के योग के बराबर होता है।
(i) माना a = 7 cm, b = 24 cm तथा c = 25 cm
तब, (सबसे लम्बी भुजा)2 = c2 = (25)2 = 625
तथा a2 + b2 = (7)2 + (24)2 = 49 + 576 = 625
c2 = a2 + b2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर है।
अत: दिया गया त्रिभुज समकोण त्रिभुज है। कर्ण की लम्बाई = 25 सेमी।

(ii) माना a = 3 cm, b = 8 cm तथा c = 6 cm,
तब, b2 = (8)2 = 64
तथा a2 + c2 = 32 + 62 = 9 + 36 = 45
b2 ≠ c2 + a2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर नहीं है।
अत: दिया गया त्रिभुज समकोण त्रिभुज नहीं है।

(iii) माना a = 50 cm, b = 80 cm तथा c = 100 cm
तब, c2 = (100)2 = 10,000
तथा a2 + b2 = (50)2 + (80)2 = 2500 + 6400 = 8900
c2 ≠ a2 + b2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर नहीं है।
अतः दिया गया त्रिभुज समकोण त्रिभुज नहीं है।

(iv) माना a = 13 cm, b = 12 cm तथा c = 5 cm
तब, a2 = (13)2 = 169
तथा b2 + c2 = (12)2 + (5)2 = 144 + 25 = 169
a2 = b2 + c2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर है।
अत: दिया गया त्रिभुज समकोण त्रिभुज है।
कर्ण की लम्बाई = 13 सेमी।

प्र. 2. PQR एक समकोण त्रिभुज है जिसका कोण Pसमकोण है तथा QR पर बिन्दु M इस प्रकार स्थित है कि PM ⊥ QR है। दर्शाइए कि PM2 = QM . MR है।


हल

दिया है : समकोण त्रिभुज PQR में ∠P समकोण है तथा PM ⊥ QR है।
सिद्ध करना है : PM2 = QM . MR
उपपत्ति : :: समकोण त्रिभुज PQR में ∠P समकोण है और इसके समकोण वाले शीर्ष P से कर्ण QR पर लम्ब खींचा गया है।
∆PQM ~ ∆RPM
QMPM=PMMR (:: ∆PQM और ∆PRM की भुजाएँ आनुपातिक हैं)
PM2 = QM . MR (वज्रगुणन से)
अतः PM2 = QM . MR
इति सिद्धम्

प्र. 3. दी गई आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि-
(i) AB2 = BC . BD
(ii) AC2 = BC . DC
(iii) AD2 = BD . CD


हल

दिया है : ΔABD में ∠DAB = 90° तथा AC ⊥ BD
सिद्ध करना है :
(i) AB2 = BC . BD
(ii) AC2 = BC . DC
(iii) AD2 = BD . CD
उपपत्ति : ΔABD में, ∠DAB = 90°
ΔABD समकोण त्रिभुज है जिसमें AC ⊥ BD
ΔABC ~ ΔDBA और ΔDAC ~ ΔDBA तथा ΔABC ~ ΔDAC
(i) ∵ ΔABC ~ ΔDBA
∴ ΔABC तथा ΔDBA की तुलना करने पर,
BCAB=ABBD
AB2 = BC . BD
इति सिद्धम्

(ii) ∵ ΔABC ~ ΔDAC
∴ ΔABC तथा ΔDAC की तुलना करने पर,
BCAC=ACDC
AC2 = BC · DC
इति सिद्धम्

(iii) ∵ ΔDAC ~ ΔDBA
∴ ΔDAC तथा ΔDBA की तुलना करने पर,
ADBD=CDAD
AD2 = BD . CD
इति सिद्धम्

प्र. 4. ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।


हल

दिया है : ΔABC समद्विबाहु है जिसमें ∠C = 90° तथा BC = AC
सिद्ध करना है : AB2 = 2AC2
उपपत्ति : समद्विबाहु समकोण ΔABC में,
पाइथागोरस प्रमेय के अनुसार,
AB2 = AC2 + BC2
⇒ AB2 = AC2 + (AC)2
⇒ AB2 = AC2 + AC2 [∵ दिया है, BC = AC]
अत : AB2 = 2AC2
इति सिद्धम्

प्र. 5. ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। यदि AB2 = 2AC2 हो तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है।


हल

दिया है : समद्विबाहु ΔABC में,
AC = BC और AB2 = 2AC2
सिद्ध करना है : ΔABC एक समकोण त्रिभुज है।
उपपत्ति : AB2 = 2AC2
⇒ AB2 = AC2 + AC2
⇒ AB2 = BC2 + AC2 (∵ AC = BC)
पाइथागोरस प्रमेय के विलोम से, ΔABC समकोण त्रिभुज होगा।
इति सिद्धम्

प्र. 6. एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलम्ब की लम्बाई ज्ञात कीजिए।


हल

ΔABC समबाहु त्रिभुज है।
त्रिभुज की भुजा AB = 2a, BC = 2a तथा CA = 2a
त्रिभुज के शीर्ष A से BC पर लम्ब AD खींचा गया है।
BD = 12 BC
⇒ BD = 12 (2a) = a
तब, समकोण त्रिभुज ABD में,
AD2 + BD2 = AB2
⇒ AD2 + a2 = (2a)2
⇒ AD2 = 4a2 – a2 = 3a2
⇒ AD = a√3
शीर्षलम्ब, AD = a√3
त्रिभुज समबाहु है; अत: दो अन्य शीर्षलम्बों की लम्बाई भी a√3 होगी।

प्र. 7. सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग विकर्णों के योग के बराबर होता है।
हल

दिया है : चतुर्भुज ABCD एक समचतुर्भुज है जिसमें AC तथा CD दो विकर्ण हैं जो परस्पर O पर काटते हैं।
सिद्ध करना है : AB2 + BC2 + CD2 + DA2 = AC2 + BD2



प्र. 8. दी गई आकृति में ∆ABC के अभ्यन्तर में स्थित कोई बिन्दु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि-
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2


हल

दिया है : ∆ABC के अन्दर एक बिन्दु O है जिससे भुजाओं BC, CA तथाAD पर क्रमशः OD, OE और OF लम्ब खींचे गए हैं।
सिद्ध करना है :
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
रचना : रेखाखण्ड OA, OB तथा OC खींचिए।


उपपत्ति :
(i) समकोण ∆OAF में,
AF2 + OF2 = OA2 ……(1)
समकोण ∆OBD में,
BD2 + OD2 = OB2 ……..(2)
समकोण ∆OCE में,
CE2 + OE2 = OC2 ……(3)
समीकरण (1), समीकरण (2) और समीकरण (3) को जोड़ने पर,
AF2 + BD2 + CE2 + OF2 +OD2 + OE2 = OA2 + OB2 + OC2
अत: AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2
OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
इति सिद्धम्

(ii) समकोण ∆OBD में,
OD2 + BD2 = OB2 ……(4)
समकोण ∆OCD में,
OD2 + CD2 = OC2 …….(5)
समीकरण (5) को समीकरण (4) में से घटाने पर,
BD2 – CD2 = OB2 – OC2 …..(6)
इसी प्रकार, समकोण ∆OCE व ∆OAE में,
CE2 – AE2 = OC2 – OA2 …….(7)
और समकोण ∆OAF व ∆OBF में,
AF2 – BF2 = OA2 – OB2 ……(8)
अब, समीकरण (6), समीकरण (7) और समीकरण (8) को जोड़ने पर,
BD2 + CE2 + AF2 – CD2 – AE2 – BF2 = 0
अतः AF2 + BD2 + CE2 = AE2 + CD2 + BF2
इति सिद्धम्

प्र. 9. 10 m लम्बी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुंचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।


हल

दिया है : भूमि से 8 m ऊँचाई पर एक खिड़की A है जिससे खिड़की AB = 8 m सीढ़ी की लम्बाई AC = 10 m है जिसे खिड़की से लगाने पर उसका निचला सिरा भूमि पर बिन्दु C पर पड़ता है।
ज्ञात करना है : दीवार के आधार से सीढ़ी के निचले सिरे की दूरी BC
गणना : समकोण त्रिभुज ABC में,
AB2 + BC2 = AC2
⇒ (8)2 + (BC)2 = (10)2
⇒ 64 + BC2 = 100
⇒ BC2 = 100 – 64 = 36
⇒ BC2 = 36
⇒ BC = √36 = 6 m
अतः दीवार के आधार से सीढ़ी के निचले सिरे की दूरी (BC) = 6 m

प्र. 10. 18 m ऊँचे एक ऊर्ध्वाधर खम्भे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूटे से जुड़ा हुआ है। खम्भे के आधार से खुंटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लम्बाई 24 m है।


हल

दिया है : माना क्षैतिज धरातल पर l एक सरल रेखा है जिसके किसी बिन्दु B पर एक खम्भा AB ऊर्ध्वाधर गड़ा है। एक तार जिसकी लम्बाई 24 m है, का एक सिरा खम्भे के शिखर A से बँधा है। तार का दूसरा सिरा धरातल पर गड़े एक खूटे C से बँधा है। तार तना रहता है।
ज्ञात करना है : खम्भे के सिरे B की खूटे C से दूरी BC
विश्लेषण : माना खम्भे के आधार B से खूटे की दूरी BC = x m है।
खम्भा भूमि पर सीधा गड़ा है।
∠ABC = 90°
∆ABC समकोणीय है।
पाइथागोरस प्रमेय से,
AB2 + BC2 = CA2
⇒ 182 + x2 = 242
⇒ x2 = 242 – 182 = 576 – 324 = 252
⇒ x = √252 = 6×6×7
⇒ x = 6√7
अत: खम्भे के आधार से खूटे की दूरी x = 6√7 मीटर या 15.87 मीटर।

प्र. 11. एक हवाईजहाज एक हवाई अड्डे से उत्तर की ओर 1000 किमी प्रति घण्टा की चाल से उड़ता है। इसी समय एक अन्य हवाईजहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 किमी प्रति घण्टा की चाल से उड़ता है। 112 घण्टे के बाद दोनों हवाईजहाजों के बीच की दूरी कितनी होगी?


हल

पहले हवाई जहाज द्वारा हवाई अड्डे A से उत्तर दिशा में 112 घण्टे में चली गई दूरी,
AB = 1000 × 112
= 1000 × 32
= 1500 किमी
दूसरे हवाई जहाज द्वारा हवाई अड्डे A से पश्चिम दिशा में 112 घण्टे में चली गई दूरी,
AC = 1200 × 112
= 1200 × 32
= 1800 किमी
तब, समकोण त्रिभुज ABC में,
BC2 = AB2 + AC2
⇒ BC2 = (1500)2 + (1800)2
⇒ BC2 = 2250000 + 3240000
⇒ BC2 = 5490000
⇒ BC2 = 9 × 10000 × 61
⇒ BC = 9×10000×61 = 300√61 किमी
अत: 112 घण्टे बाद दोनों हवाईजहाजों के बीच की दूरी = 300√61 किमी

प्र. 12. दो खम्भे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके निचले सिरों के बीच की दूरी 12 m हो तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।


हल

दिया है : AB = 6 m तथा CD = 11 m लम्बाई के दो खम्भे मैदान में खड़े हैं जिनके निचले सिरों B और D के बीच की दूरी BD = 12 m है।
ज्ञात करना है : ऊपरी सिरों के बीच की दूरी AC
रचना : A से CD पर लम्ब AE खींचा।
गणना : AB = 6 m, CD = 11 m, BD = 12 m
∴ AE = 12 m तथा ED = AB = 6 m
∵ CD = 11 m
CE + ED = 11 m
⇒ CE + 6 = 11 m
⇒ CE = 11 – 6 = 5 m
समकोण ∆ACE में,
AC2 = AE2 + CE2 = (12)2 + (5)2 = 144 + 25 = 169
⇒ AC = √169 = 13 m
अत: दोनों ऊपरी सिरों के बीच की दूरी AC = 13 m

प्र. 13. एक ∆ABC जिसका ∠C समकोण है की भुजाओं CA और CB पर क्रमशः बिन्दु D और E पर स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।


हल

दिया है : समकोण त्रिभुज ABC जिसमें ∠C समकोण है। बिन्दु D और E क्रमशः भुजाओं CA व CB पर स्थित हैं।
सिद्ध करना है : AE2 + BD2 = AB2 + DE2
उपपत्ति : समकोण त्रिभुज ABC में,
AC2 + BC2 = AB2 …….(1)
और समकोण त्रिभुज DEC में,
CD2 + CE2 = DE2 …….(2)
समीकरण (1) व (2) को जोड़ने पर,
AB2 + DE2 = AC2 + BC2 + CD2 + CE2 …..(3)
समकोण त्रिभुज DBC में, BD2 = BC2 + CD2 ……..(4)
समकोण त्रिभुज AEC में, AE2 = AC2 + CE2 ……(5)
समीकरण (4) व (5) को जोड़ने पर,
AE2 + BD2 = AC2 + BC2 + CE2 + CD2
समीकरण (3) व (6) से, AE2 + BD2 = AB2 + DE2
इति सिद्धम्

प्र. 14. किसी ∆ABC के शीर्ष A से भुजा BC पर डाला गया लम्ब BC को बिन्दु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है। सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।


हल

दिया है : ∆ABC में आधार BC पर शीर्ष A से AD लम्ब इस प्रकार डाला गया है कि BD = 3CD
सिद्ध करना है : 2AB2 = 2AC2 + BC2
उपपत्ति : समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2
दोनों पक्षों में 2 से गुणा करने पर,
2AB2 = 2AD2 + 2BD2
⇒ 2AB2 = 2 AC2 – CD2 + 2(3CD)2 (∵ AD2 = AC2 – CD2; BD = 3CD)
⇒ 2AB2 = 2AC2 – 2CD2 + 18CD2
⇒ 2AB2 = 2AC2 + 16CD2
⇒ 2AB2 = 2AC2 + (4CD)2
⇒ 2AB2 = 2AC2 + (CD + 3CD)2
⇒ 2AB2 = 2AC2 + (CD + BD)2 (∵ 3CD = BD)
⇒ 2AB2 = 2AC2 + BC2 (∵ BC = CD + BD)
अतः 2AB2 = 2AC2 + BC2
इति सिद्धम्

प्र. 15. किसी समबाहु त्रिभुज ABC की भुजा BC पर बिन्दु D इस प्रकार स्थित है कि BD = 13 BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।


हल

दिया है : ∆ABC एक समबाहु त्रिभुज है जिसके आधार BC पर एक बिन्दु D इस प्रकार है कि BD = 13 BC
सिद्ध करना है : 9AD2 = 7AB2
रचना : A से BC पर AE लम्ब खींचिए।
उपपत्ति : समबाहु ∆ABC में, AE ⊥ BC
BE = CE = 12 BC
BE = 12AB (∵ BC = AB) …..(1)
समकोण ∆ABE में,


दोनों पक्षों में लघुत्तम समापवर्त्य 36 से गुणा करने पर,
36 × (34 AB2) + 36 × (136 AB2) = 36AD2
⇒ 27AB2 + AB2 = 36AD2
⇒ 28AB2 = 36AD2
⇒ 7AB2 = 9AD2 (4 सार्वनिष्ठ है)
अतः 9AD2 = 7AB2
इति सिद्धम्

प्र. 16. किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलम्ब के वर्ग के चार गुने के बराबर होता है।


हल

दिया है : ABC एक समबाहु त्रिभुज है जिसकी एक भुजा AB है।
त्रिभुज के शीर्ष A से आधार BC तक शीर्ष लम्ब AD खींचा गया है।
सिद्ध करना है : भुजा2 × 3 = शीर्ष लम्ब2 × 4 अर्थात्
अर्थात 3AB2 = 4AD2
उपपत्ति : माना AB = 2a
⇒ a = 12 AB
∆ABC समबाहु है,
AB = BC
⇒ BC = 2a
शीर्ष A से BC पर AD लम्ब है।
समकोण ∆ABD तथा ∆ACD में,
AB = AC (समबाहु त्रिभुज की भुजाएँ हैं)
AD = AD (उभयनिष्ठ भुजा है)
∆ABD ≅ ∆ACD
BD = CD = CD
परन्तु BC = BD + CD = 2a
⇒ BD = a
तब, समकोण ∆ABD में,
AB2 = BD2 + AD2
⇒ (2a)2 = (a)2 + AD2
⇒ AD2 = 4a2 – a2 = 3a2
⇒ AD2 = 3 × (AB2)2 (∵ a = 12 AB)
⇒ AD2 = 3AB24
अत: 3AB2 = 4AD2
अथवा भुजा2 × 3 = शीर्षलम्ब2 × 4
इति सिद्धम्

प्रश्नावली 6.6 (NCERT Page 166)

प्र. 1.
दी गई आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि QSSR=PQPR है।


हल
दिया है : ∆PQR में PS कोण QPR का समद्विभाजक है।
सिद्ध करना है : QSSR=PQPR
रचना : बिन्दु R से रेखा RT || PS खींची जो बढ़ाई गई QP को T पर प्रतिच्छेद करे।
उपपत्ति : TR || PS और PR तिर्यक रेखा है
∠SPR = ∠PRT (एकान्तर कोण-युग्म है) ……(1)
पुन: TR || PS और QT तिर्यक रेखा है।
∠QPS = ∠PTR (संगत कोण-युग्म है) ……(2)
परन्तु PS, ∠QPR का समद्विभाजक है।
∠QPS = ∠SPR …….(3)
तब, समीकरण (1), (2) व (3) से,
∠PTR = ∠PRT
∆PTR की भुजा PT = PR ……(4)



अब, ∆QTR में, PS || TR
PQPT=QSSR
परन्त समीकरण (4) से, PT = PR
अतः PQPR=QSSRQSSR=PQPR
इति सिद्धम्

प्र. 2. दी गई आकृति में D, ∆ABC के कर्ण AC पर स्थित एक बिन्दु है जबकि BD ⊥ AC, DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि-
(i) DM2 = DN . MC
(ii) DN2 = DM . AN


हल

दिया है : समकोण ∆ABC में ∠ABC = 90°
BD ⊥ AC, DM ⊥ BC तथा DN ⊥ AB
सिद्ध करना है :
(i) DM2 = DN . MC
(ii) DN2 = DM . AN
उपपत्ति : समकोण ∆ABC में, BD ⊥ AC (दिया है)
∆BDC ~ ∆ABC और ∆ADB ~ ∆ABC
जिससे ∆BDC ~ ∆ADB
तथा ∆BDC और ∆ADB समकोणीय हैं।
(i) समकोण ∆BDC में, DM ⊥ BC (दिया है)
∆DMC ~ ∆BMD
MCDM=DMBM
⇒ DM2 = BM × MC …….(1)
चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BM = DN ………(2)
तब, समीकरण (1) व (2) से,
DM2 = DN . MC
इति सिद्धम्

(ii) समकोण ∆ADB में, DN ⊥ AB (दिया है)
∆AND और ∆DNB में,
DNBN=ANDN
⇒ DN2 = BN . AN …….(3)
परन्तु, चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BN = DM ……(4)
तब, समीकरण (3) व (4) से,
DN2 = DM · AN
इति सिद्धम्

प्र. 3. दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2BC . BD है।


हल

दिया है : ∆ABC में, ∠ABC > 90° तथा AD ⊥ CB है।
सिद्ध करना है : AC2 = AB2 + BC2 + 2BC . BD
उपपत्ति : समकोण ∆ABD में,
AB2 = AD2 + BD2 ……(1)
पुनः समकोण ∆ACD में,
AC2 = AD2 + DC2
= AD2 + (BD + BC)2 (∵ DC = BD + BC)
= AD2 + BD2 + BC2 + 2BC . BD [∴ (BD + BC)2 के विस्तार से]
= AB2 + BC2 + 2BC . BD [∴ समीकरण (1) से ]
अतः AC2 = AB2 + BC2 + 2BC . BD
इति सिद्धम्

प्र. 4. दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° है तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC . BD है।


हल

दिया है : ∠B < 90° तथा AD ⊥ BC
सिद्ध करना है : AC2 = AB2 + BC2 – 2BC . BD
उपपत्ति : AD ⊥ BC
∆ABD तथा ∆ACD समकोणीय त्रिभुज हैं।
तब, समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2 ……(1)
और समकोण त्रिभुज ACD में,
AC2 = AD2 + DC2 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
AC2 – AB2 = DC2 – BD2
⇒ AC2 – AB2 = (DC + BD) (DC – BD) (∵ (a + b) (a – b) = a2 – b2)
⇒ AC2 – AB2 = BC(DC – BD) (∵ DC + BD = BC)
⇒ AC2 – AB2 = BC(BC – BD – BD) (∵ DC = BC – BD)
⇒ AC2 – AB2 = BC (BC – 2BD)
⇒ AC2 – AB2 = BC2 – 2BC × BD
अत: AC2 = AB2 + BC2 – 2BC . BD
इति सिद्धम्

प्र. 5. दी गई आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि-


हल

दिया है : ABC एक त्रिभुज है जिसमें D, भुजा BC का मध्य-बिन्दु AM, BC पर लम्ब खींचा गया है और AC > AB
सिद्ध करना है :


उपपत्ति : (i) समकोण ∆AMD में, AM2 + DM2 = AD2 …..(1)
समकोण ∆AMC में,
AC2 = AM2 + MC2
= (AD2 – DM2) + MC2 [समीकरण (1) से AM2 = AD2 – DM2]
= AD2 – DM2 + (DM + DC)2 [∵ MC = DM + DC]
= AD2 – DM2 + DM2 + 2DM . DC + DC2
= AD2 + 2 DM . DC + (12 BC)2 [∵ D, BC मध्य-बिन्दु है]
= AD2 + (2DC). DM + 14 BC2 [∵ 2DC = BC]
अत: AC2 = AD2 + BC . DM + (BC2)2 ……(2)
इति सिद्धम्

(ii) समकोण ∆AMB में,
AB2 = AM2 + BM2
= (AD2 – DM2) + BM2
= AD2 – DM2 + (BD – DM)2
= AD2 – DM2 + BD2 – 2BD . DM + DM2 [∵ (a – b)2 = a2 – 2ab + b2]
= AD2 – 2BD . DM + BD2
= AD2 – BC . DM + (12BC)2 [∵ D, BC का मध्य-बिन्दु है।]
AB2 = AD2 – BC . DM + 14 BC2 …….(3)
अत: AB2 = AD2 – BC . DM + (BC2)2
इति सिद्धम्

(iii) खण्ड (i) व खण्ड (ii) के परिणामों का योग करने पर,
AB2 + AC2 = 2AD2 + 2 . 14 BC2 = 2AD2 + 12 BC2
अत: AB2 + AC2 = 2AD2 + 12 BC2
इति सिद्धम्

प्र. 6. सिद्ध कीजिए कि एक समान्तर चतुर्भुज के विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।


हल

दिया है : ABCD एक समान्तर चतुर्भुज है जिसके विकर्ण AC और BD परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है : AC2 + BD2 = AB2 + BC2 + CD2 + DA2
रचना : A से BD पर AE C से BD पर CF लम्ब खींचा।
उपपत्ति: ABCD एक समान्तर चतुर्भुज है और AC तथा BD उसके विकर्ण हैं जो परस्पर O पर काटते हैं।
∴ AO = OC, OB = OD तथा AB = CD
तब, समकोण ∆ABE में,


प्र. 7. दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD परस्पर बिन्द P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP


हल

दिया है : एक वृत्त की AB व CD दो जीवाएँ हैं जो एक-दूसरे को बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP
रचना : रेखाखण्ड AD व CB खींचे।
उपपत्ति : (i) जीवा AB और CD परस्पर P पर काटती हैं।
शीर्षाभिमुख कोण ∠APC = ∠BPD
∠CAP = ∠BDP (एक ही वृत्तखण्ड के कोण हैं)
और ∠ACP = ∠DBP (एक ही वृत्तखण्ड के कोण हैं)


अब, ∆APC और ∆BPD में,
∠APC = ∠BPD
∠CAP = ∠BDP
∠ACP = ∠DBP
दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆APC ~ ∆DPB
इति सिद्धम्
(ii) ∆APC और ∆DPB में,
APDP=CPPB
अत: AP . PB = CP . DP
इति सिद्धम्

प्र. 8. दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD


हल

दिया है : AB और CD एक वृत्त की दो जीवाएँ हैं जो बढ़ाने पर एक-दूसरे को वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD
रचना : रेखाखण्ड AC व BD को मिलाया।
उपपत्ति : (i) चतुर्भुज ABCD एक चक्रीय चतुर्भुज है और ∠PAC उसका बहिष्कोण है।
∠PAC = ∠BDC
⇒ ∠PAC = ∠BDP
इसी प्रकार, ∠PCA, चक्रीय चतुर्भुज ABCD का बहिष्कोण है।
∠PCA = ∠ABD
∠PCA = ∠PBD …..(2)
अब, ∆PAC और ∆PBD में,
∠CPA = ∠BPD (दोनों त्रिभुजों का उभयनिष्ठ कोण है)
∠PAC = ∠BDP [समीकरण (1) से]
∠PCA = ∠PBD [समीकरण (2) से]
दो त्रिभजों की समरूपता के गुणधर्म AAA से,
∆PAC ~ ∆PDB
इति सिद्धम्
(ii) ∵ ∆PAC ~ ∆PDB
PAPD=PCPB
⇒ PA . PB = PC . PD
इति सिद्धम्

प्र. 9. दी गई आकृति में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि BDCD=ABAC है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।


हल

दिया है : ∆ABC की भुजा BC पर एक बिन्दु D ऐसा है कि BDCD=ABAC
सिद्ध करना है : AD, ∠BAC का समद्विभाजक है।
रचना : BA को उसकी सीध में E तक इतना बढ़ाया कि AE = AC हो। रेखाखण्ड CE खींचा।
उपपत्ति: दिया है,
BDCD=ABAC
∵ AC = AE ⇒ BDCD=ABAE
तब, ∆BEC में, BDCD=ABAE
अनुपातिकता के मूलभूत प्रमेय के विलोम से, AD || EC
AD || EC और BE तिर्यक रेखा है।
∠BAD = ∠AEC ……(1)
AD || EC और AC तिर्यक रेखा है।
∠CAD = ∠ACE ……(2)


परन्तु ∆ACE में रचना से, AC = AE
∠AEC = ∠ACE …….(3)
तब समीकरण (1), (2) व (3) से,
∠BAD = ∠CAD
परन्तु ∠BAD + ∠CAD = ∠BAC
अत: AD, ∠BAC का समद्विभाजक है।
इति सिद्धम्

प्र. 10. नाज़िमा एक नदी की धारा में मछलियाँ पकड़ रही है। उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी की सतह पर इस प्रकार स्थित है कि उसकी नाज़िमा से दूरी 3.6 m है और छड़ के सिरे के ठीक नीचे पानी की सतह पर स्थित बिन्दु से उसकी दूरी 2.4 m है। यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी बाहर निकाली हुई है? यदि वह डोरी को 5 cm/s की दर से अन्दर खींचे तो 12 सेकण्ड के बाद नाज़िमा की काँटे से क्षैतिज दूरी कितनी होगी?


हल
चित्र में, नाजिमा की मछली पकड़ने वाली छड़ का सिरा A पानी की सतह से 1.8 m ऊँचाई पर है जिससे AC = 1.8 m है।
डोरी AB के सिरे B पर एक काँटा है जिसकी बिन्दु C से दूरी BC = 2.4 m है और नाजिमा से B की दूरी BD = 3.6 m है।
CD = BD – BC = 3.6 – 2.4 = 1.2 m
माना डोरी की लम्बाई AB है।


तब समकोण ∆ABC में,
AB2 = BC2 + CA2
⇒ AB2 = (2.4)2 + (1.8)2 = 5.76 + 3.24 = 9.0
⇒ AB = √9.00 = 3 m
अतः डोरी की लम्बाई = 3 m
जब वह डोरी को 5 cm/s की दर से अन्दर खींच रही है तो 12 सेकण्ड में खींची दूरी = 5 × 12 = 60 cm = 0.6 m
तब पानी के बाहर डोरी की लम्बाई AP = 3.6 – 0.6 = 2.4 m
तब काँटे से छड़ के सिरे A के ठीक नीचे बिन्दु C की क्षैतिज दूरी PC होगी।
समकोण ∆APC में,
PC2 + AC2 = AP2
PC2 + (1.8)2 = (2.4)2
PC2 + 3.24 = 5.76
PC2 = 5.76 – 3.24 = 2.52
PC = √2.52 = 1.587 m = 1.59 मीटर (लगभग)
काँटे से नाज़िमा की क्षैतिज दूरी PD = PC + CD = (1.59) + (1.2) cm = 2.79 m
अत: काँटे से नाज़िमा की क्षैतिज दूरी = 2.79 m

Previous Post Next Post